$(M^+, 2)$, 362 (100), 347 (29), 331 (23). Anal. Calcd for $C_{25}H_{24}O_8$: C, 66.37; H, 5.35. Found: C, 66.59; H, 5.52.

Acknowledgment. This investigation was supported in part by Grant CA-24199, awarded by the National Institutes of Health. We also thank Adria Laboratories for partial financial support.

Registry No. 5, 77422-59-4; 6, 67122-25-2; 7, 79919-76-9; 9,

77422-62-9; 10, 77422-60-7; 11, 76811-56-8; 12, 42082-94-0; 13, 13207-03-9; 14, 79899-11-9; 15, 79899-12-0; 16, 79899-13-1; 17, 79899-14-2; 18, 76527-50-9; 19, 79899-15-3; 20, 79899-16-4; 21, 77422-64-1; 22, 79899-17-5; 23, 65818-84-0; 24, 79899-18-6; 25, 79899-19-7; 26, 79899-20-0; 27, 79899-21-1; 28, 5471-63-6; 29, 79899-22-2; 30, 79899-23-3; 31, 79899-24-4; 32, 79899-25-5; 33, 79899-26-6; 1,4-dihydroxy-2,3-dimethylanthraquinone, 25060-18-8; 1,4-dimethoxy-2,3-dimethylanthraquinone, 67122-24-1; methyl vinyl ketone, 78-94-4; 2,3-butanedione, 431-03-8.

Synthesis of Selectively Protected Tri- and Hexaamine Macrocycles

Andrea E. Martin, Thomas M. Ford, and John E. Bulkowski*

Department of Chemistry, University of Delaware, Newark, Delaware 19711

Received January 6, 1981

A general route to tri- and hexaamine macrocycles containing selectively protected diethylenetriamine units has been developed. Condensation of the N'-benzoyl-N,N"-bis(p-tolylsulfonyl)diethylenetriamine N,N"-disodium salt with bissulfonate esters of two-, four-, and six-carbon diols at high reactant concentrations gave the corresponding 9- and 18- (85% and <1%), 11- and 22- (30% and 20%), and 13- and 26- (56% and 17%) membered tri- and hexaamine macrocycles, respectively. The benzoyl group was selectively removed with potassium tert-butoxide in ca. 90% yield, and the macrocycles were conveniently separated by chromatography. Details of the synthetic procedures and characterization of the new selectively protected tri- and hexaamine macrocycles are described.

A significant property of macrocyclic polyamines is their ability to form stable complexes with transition metal ions. In this regard, cyclic tetraamines have been the most extensively studied macrocycles.^{1,2} However, there is now considerable interest in elucidating the coordination properties of tri- and hexaamine macrocycles due to the novel structural features of the resulting metal complexes. Recent studies³⁻⁵ with small, cyclic triamines such as 1a (n = 2, 3) indicate that the metal complexes have cis coordination geometries and distorted structures. Current work with the larger hexaamines 2a $(n = 5)^6$ and $2b^7$ shows that they readily bind two metals to yield discrete binuclear complexes. Binuclear compounds of these ligands may be especially useful as models for bimetallic metalloproteins and as bimetallic catalysts.

Synthesis of the triamines 1a (n = 2, 3) is conveniently accomplished by using Richman and Atkins's modification of the method of Koyama and Yoshino.9 The symmetric 18-membered hexaamine 2a (n = 2) has been synthesized by an adaptation of this general procedure.¹⁰ The synthetic method relies on the condensation of bissulfonamide sodium salts and compounds having sulfonate ester leaving groups to facilitate ring closure at high reactant concentrations. This obviates the need for employing high-di-

2a,
$$X = Y = H$$
; $A = (CH_2)_n$
b, $X = Y = H$; $A = (CH_2CH_2)_2O$
c, $X = Y = tosyl$; $A = (CH_2)_n$
d, $X = H$; $Y = tosyl$; $A = (CH_2CH_2)_2O$
e, $X = tosyl$; $Y =$

lution or template techniques. When compounds 1b (n= 5, 6) were synthesized by this procedure, it was noted that the corresponding 2:2 cyclization products 2c were also formed in 10-15% yield.8 It has been suggested11 that restricted rotation in the tosylated reactants (i.e., internal entropy effects) are the reason for the high yields achieved in these cyclizations. We are unaware of any reports detailing the application of this procedure to provide selectively protected macrocycles of types 1d and 2f, although this possibility has been mentioned as an extension of this method.⁸ A route to the 24-membered selectively protected hexaamine 2d which uses high-dilution methods in the

¹a, X = Y = H b, X = Y = tosyl
 c, X = benzoyl; Y = tosyl d. X = H; Y = tosvl

⁽¹⁾ D. H. Busch, Helv. Chim. Acta, 174 (1967)

L. F. Lindoy, Chem. Soc. Rev., 4, 421 (1975).
 L. J. Zompa, Inorg. Chem., 17, 2531 (1978).
 R. D. Bereman, M. R. Churchill, P. M. Schaber, and M. E. Winkler, Inorg. Chem., 18, 3122 (1979).
(5) W. F. Schwindinger, T. G. Fawcett, R. A. Lalancette, J. A. Potenza,

and H. J. Schugar, Inorg. Chem., 19, 1379 (1980).

(6) P. K. Coughlin, S. J. Lippard, A. E. Martin, and J. E. Bulkowski,

J. Am. Chem. Soc., 102, 7616 (1980).
(7) P. K. Coughlin, J. C. Dewan, S. J. Lippard, E. Watanabe, and J.

<sup>M. Lehn, J. Am. Chem. Soc., 101, 265 (1979).
(8) J. E. Richman and T. J. Atkins, J. Am. Chem. Soc., 96, 2268 (1974).
(9) H. Koyama and T. Yoshino, Bull. Chem. Soc. Jpn., 45, 481 (1972).</sup> (10) T. J. Atkins, J. E. Richman, and W. F. Oettle, Org. Synth., 58, 86 (1978).

Scheme I NH2 TSCI TS 10 11

cyclization step has been reported. 12

Our interest in the metal complexation properties of the modified diethylenetriamine-containing macrocycles 1 (as a function of different ring sizes and X, Y substituents) as well as the potentially binucleating macrocycles 3¹³ and 4¹² led us to investigate the synthesis of selectively pro-

tected polyamines 1d and 2f of varying ring sizes. Consequently, we examined the condensation of the selectively protected diethylenetriamine bissulfonamide salt 5 and a series of bissulfonate esters 6 where n = 2, 4, 6 (see eq 1)

$$C_6H_5C(0)$$
 N_0 N_0

to determine the efficiency of the cyclizations and product distribution ratios for formation of small and large rings. We report here the convenient synthesis developed for the new selectively protected macrocyclic polyamines and the product distribution results.

Results and Discussion

The selectively protected diethylenetriamine 10 was readily prepared in large quantities from reaction of the monotosylated ethylenediamine 7 and N-tosylaziridine 9

(see Scheme I) in ca. 75% yield. Compound 7 was synthesized by reacting a threefold excess of ethylenediamine with tosyl chloride.¹⁴ Removal of bissulfonamide byproduct from 7 was readily accomplished by treatment with MeOH, in which only the monosulfonamide is appreciably soluble. The tosylaziridine 9 used in this sequence was conveniently obtained from the ditosylated ethanolamine 8 in a two-phase reaction. It was isolated as a white crystalline solid in 90% yield. Treatment of 10 with benzoyl chloride resulted in high-yield conversion to the selectively protected triamine 11. The benzoyl protecting group was chosen since it was expected to provide efficient cyclization in the ring-closure reaction^{8,11} due to restricted rotation of the amide linkage, to be stable to the cyclization conditions, and to be selectively removed in high yield after the ring closure. The disodium salt of the selectively protected bissulfonamide 5 was prepared by slight modification of the reported procedure for the tritosylated triamine analogue. The bissulfonate esters 6 (n = 2, 4,6) were prepared by reaction of the appropriate diol with tosyl chloride in pyridine 15,16 and were obtained as highly pure white crystalline solids upon recrystallization from ethanol.

The ring-closure reaction (eq 1) gave a high yield of cyclized product when n = 2 (85% 1c, <1% 2e), although cyclization yields were poorer with longer chain lengths (n = 4, 30% 1c, 20% 2e; n = 6, 56% 1c, 17% 2e). These results agree reasonably well with those previously reported⁸ for the reaction of the tritosylated diethylenetriamine analogue, except that the yield of 1c (n = 4) is unusually low. The overall cyclization yield of ca. 50% was reproducibly obtained in several experiments. It is not obvious why the yields in the case of n = 4 are consistently low. Molecular models do not indicate any unusual steric constraints for this case compared to n = 2 and n = 6. The presence of an impurity would not seem to be consistent with the relatively high yield of the 2:2 cyclization product. The 1:1 and 2:2 selectively protected macrocycles were separated from one another by column chromatography on silica. The remaining crude product contained presumably polymeric materials which were relatively insoluble and remained as an immobile band at the origin of the chromatography column under conditions where the rings were quite mobile.

The selective removal of the benzovl group was accomplished in ca. 90% yield by the procedure of Gassman¹⁷ for the hydrolysis of tertiary amides, using potassium tert-butoxide, to give the di- and tetratosylamides 1d and 2f from 1c and 2e respectively. This method is conveniently carried out on the crude reaction mixture obtained from the ring-closure reaction. Separation of the product macrocycles by chromatography is somewhat easier than for the selectively protected precursors.

The analyses of the products indicate in several cases the presence of residual solvent (CH2Cl2) which is not readily removed by drying in vacuo. This affinity of macrocycles for solvent has previously been noted. 18

In conclusion, a route leading to the synthesis of new selectively protected triaza and hexaaza macrocycles has been developed. These rings can readily be deprotected

99, 2968 (1977).

⁽¹²⁾ J. M. Lehn, S. H. Pine, E. Watanabe, and A. K. Willard, J. Am. Chem. Soc., 99, 6766 (1977).

⁽¹³⁾ A similarly bridged compound has been shown to bind two metal atoms. J. E. Bulkowski, P. L. Burk, M. F. Ludmann, and J. A. Osborn, J. Chem. Soc., Chem. Commun., 498 (1977).

⁽¹⁴⁾ A. V. Kirsanov and N. A. Kirsanova, J. Gen. Chem. USSR (Engl. Transl.) 32, 877 (1962)

⁽¹⁵⁾ L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis," Vol.

Wiley, New York, 1967, p 1180.
 C. S. Marvel and V. C. Sekera "Organic Syntheses", Collect Vol. Wiley, New York, 1955, p 366.
 P. G. Gassman, P. K. G. Hodgson, and R. J. Balchunis, J. Am.

<sup>Chem. Soc., 98, 1275 (1976).
(18) L. Y. Martin, C. R. Sperati, and D. H. Busch, J. Am. Chem. Soc.,</sup>

to give free amines. Work is currently underway in our laboratory to prepare more complex ligands such as 3 and 4 from these compounds. In addition, we are investigating a synthetic route leading exclusively to the cyclic hexaamines.

Experimental Section

All reagents (Aldrich, Fisher) were used as supplied unless otherwise noted. 1H NMR spectra were obtained on a Perkin-Elmer R-12 magnetic resonance spectrometer (CDCl₃ solvent, Me₄Si reference unless otherwise noted). Infrared spectra were recorded as KBr pellets, using a Unicam SP1100 infrared spectrophotometer. Melting points were determined on a Laboratory Devices Mel-Temp and are uncorrected. Molecular-weight determinations were made on a Hitachi Perkin-Elmer 115 vapor pressure osmometer, using CH2Cl2 as the solvent. Analyses were performed by Micro-Analysis, Inc., Wilmington, DE.

N-(2-Aminoethyl)-p-tolylsulfonamide (7). The procedure of Kirsanov and Kirsanova14 was followed to provide a white solid, which was recrystallized from hot H₂O to give 64 g (60%) of white plates: mp 124.5-126.0 °C (lit.14 mp 122-123 °C); 1H NMR (D2O, external Me₄Si) δ 7.73 (dd, 4 H), 2.82 (m, 7 H), 2.46 (s, 3 H); IR 3360 (br), 1300 (s), 1150 (s).

N-[2-[(p-Tolylsulfonyl)oxy]ethyl]-p-tolylsulfonamide (8). A modification of the procedure of Hope and Horncastle¹⁹ was used to obtain compound 8, a yellowish solid. Recrystallization from EtOH afforded a white solid: 138 g (68%); mp 86.5-88.5 °C (lit.19 mp 86–87 °C); ¹H NMR δ 7.55 (dd, 8 H), 5.27 (t, 1 H), 4.04 (t, 2 H), 3.20 (m, 2 H), 2.42 (s, 6 H); IR 3280 (s), 1360 (s), 1320 (s), 1180 (s), 1145 (s).

N-(p-Tolylsulfonyl)aziridine (9). A solution of 20% aqueous KOH (375 mL) was rapidly added to 8 (93.5 g, 0.253 mol) in 2 L of benzene. The two-phase mixture was vigorously stirred. resulting in the appearance of a pink color and a white solid. The reaction was monitored by TLC with silica and was complete in 0.5 h. The mixture was then shaken with H₂O and the benzene solution dried over Na₂SO₄. Evaporation provided the white crystalline product: 46.9 g (94%); mp 63-64 °C (lit.20 mp 64.2-64.4 °C); 1 H NMR δ 7.55 (dd, 4 H), 2.41 (s, 4 H), 2.31 (s, 3 H); IR 1595 (sh), 1318 (s), 1155 (s). Occassionally, batches were found to melt at 52.5-53.0 °C, in agreement with an earlier literature value of 52 °C.21 No difference in spectra or reactivity was noted.

 $N_{\bullet}N''$ -Bis(p-tolylsulfonyl)diethylenetriamine (10). Compound 7 (45.2 g, 0.211 mol) was dissolved in CH₃CN (1 L, dried over molecular sieves) and heated to reflux under an inert atmosphere. 9 (41.6 g, 0.211 mol) in 0.5 L of CH₃CN was added dropwise over a period of several hours. The mixture was cooled and evaporated to leave a yellow oil, which was crystallized from CH_2Cl_2 /ether to give 10 (66.5 g, 77%) as a white solid: mp 59-61 °C; ¹H NMR δ 7.55 (dd, 8 H), 4.32 (br, 3 H), 2.95 (m, 4 H), 2.62 (m, 4 H), 2.42 (s, 6 H); IR 3300 (br), 1330 (s), 1155 (s).

N'-Benzoyl-N,N''-bis(p-tolylsulfonyl)diethylenetriamine (11). Compound 10 (50.0 g, 0.121 mol) was slurried under N_2 in benzene (700 mL, distilled under N2 from CaH2) to which triethylamine (21.0 mL, 0.15 mol; distilled under N2 from 2% phenyl isocyanate) had been added. Dropwise addition of benzoyl chloride (15.0 mL, 0.129 mol) was regulated to keep the temperature <50 °C. After the mixture was stirred overnight, the white solid was filtered and washed with benzene and H₂O. It was dissolved in CH2Cl2 and washed with H2O to remove residual triethylamine hydrochloride. The organic layer was dried with K₂CO₃ and evaporated to give a white solid. Recrystallization from CH₂Cl₂/hexane afforded 49.9 g (80%) of the white, crystalline product: mp 171.0–172.8 °C; ¹H NMR δ 7.51 (m, 13 H), 5.79 (br, 2 H), 3.55 (m, 4 H), 3.15 (m, 4 H), 2.40 (s, 6 H); IR 3310 (br), 1620 (s), 1332 (s), 1148 (s), 1080 (s). Anal. Calcd for $C_{25}H_{29}N_3O_5S_2$: C, 58.23; H, 5.67; N, 8.15. Found: C, 58.34; H, 5.55; N, 8.04.

N'-Benzoyl-N,N''-bis(p-tolylsulfonyl)diethylenetriamine N,N"-Disodium Salt (5). Compound 11 (30.2 g, 0.0586 mol) was slurried in absolute EtOH (300 mL) under N2. Freshly prepared NaOEt (2.69 g, 0.117 mol of Na in 200 mL of EtOH) was added all at once. The solid rapidly dissolved, leaving a clear solution. After several hours, the solvent was removed by rotary evaporation under No. Distilled benzene was added several times and evaporated to remove residual EtOH. The white solid was dried under vacuum and stored in a drybox. The product was usually used in subsequent reactions without further treatment; however, it can be recrystallized from anhydrous EtOH under N₂. A yield of >95% was obtained; IR shows the loss of the tosylamide proton (3460 cm⁻¹ absent).

General Procedure for Synthesis of the Bissulfonate Esters (6). The diol (0.0273 mol) was dissolved in dry pyridine (200 mL) in a flask that could be tightly stoppered. The solution was chilled to 0 °C in an ice bath. Solid tosyl chloride (21 g, 0.108 mol) was then added in increments over a period of 1 h, and the orange solution was refrigerated overnight. The mixture was poured into 1 L of ice/H₂O and 50 mL of concentrated HCl to give a white solid, which was recrystallized from absolute EtOH to give the bissulfonate esters in 60-80% yield.

1.2-Bis[(n-tolvlsulfonyl)oxvlethane (6, n = 2): mp 109-111 °C (lit.²² mp 126 °C); ¹H NMR δ 7.58 (dd, 8 H), 4.20 (s, 4 H), 2.46 (s, 6 H); IR 1598 (sh), 1363 (s), 1172 (s).

1,4-Bis[(p-tolylsulfonyl)oxy]butane (6, n = 4): mp 67.5-69.5 °C (lit.²² mp \sim 70 °C); ¹H NMR δ 7.70 (dd, 8 H), 4.06 (m, 4 H), 2.44 (s, 6 H), 1.72 (m, 4 H); IR 1600 (sh), 1368 (s), 1168 (s).

1,6-Bis[(p-tolylsulfonyl)oxy]hexane (6, n = 6): mp 70.0-71.5 °C (lit.²² mp ~70 °C); ¹H NMR δ 7.54 (dd, 8 H), 3.97 (t, 4 H), 2.42 (s, 6 H), 1.46 (m, 8 H); IR 2980–2850 (m), 1595 (sh), 1354 (s), 1168 (s).

General Procedure for Synthesis of the Selectively Protected Macrocycles (1c and 2e). Compound 5 (1.79 mmol) was dissolved in DMF (10 mL; dried over molecular sieves) under a N₂ atmosphere and heated to 95 °C. A solution of the appropriate bissulfonate ester 6 (n = 2, 4, or 6; 1.79 mmol) in DMF (5 mL) was added dropwise. The temperature was maintained for 2 h, after which the solution was allowed to cool to room temperature and 150 mL of H₂O was added to precipitate the crude product. Separation of the tri- and hexaamine products for each n was effected by column chromatography on silica gel, as noted below. The products were recrystallized from CH₂Cl₂/hexane.

Cyclization Results for n = 2. 4-Benzoyl-1,7-bis(ptolylsulfonyl)-1,4,7-triazacyclononane (1c): collected as the most mobile component upon elution with CHCl₃; isolated as a white solid, 85%; mp 108–110 °C; ${}^{1}H$ NMR δ 7.48 (m, 13 H), 3.83 (br, 4 H), 3.45 (br, 8 H), 2.42 (s, 6 H); IR 1635 (s), 1600 (sh), 1345 (s), 1153 (s); mol wt calcd 542, found 508. Anal. Calcd for $C_{27}H_{31}N_3O_5S_2\cdot 0.5CH_2Cl_2$: C, 56.54; H, 5.52. Found: C, 56.43; H,

4,13-Dibenzoyl-1,7,10,16-tetrakis(p-tolylsulfonyl)-1,4,7,10,13,16-hexaazacyclooctadecane (2e): <1%; not characterized.

Cyclization Results for n = 4. 4-Benzoyl-1,7-bis(ptolylsulfonyl)-1,4,7-triazacycloundecane (1c): eluted with 0.25% MeOH/CH₂Cl₂ and collected as the first mobile band; isolated as a white solid, 30%; mp 145-147 °C; 1H NMR δ 7.46 (m, 13 H), 3.85 (m, 4 H), 3.33 (m, 8 H), 2.40 (s, 6 H), 2.00 (br, 4 H); IR 1634 (s), 1599 (sh), 1340 (s), 1153 (s); mol wt calcd 570, found 555. Anal. Calcd for C₂₉H₃₅N₃O₅S₂: C, 61.14; H, 6.19. Found: C, 61.19; H, 6.34.

4.15-Dibenzoyl-1.7.12.18-tetrakis(p-tolylsulfonyl)-1,4,7,12,15,18-hexaazacyclodocosane (2e): eluted from the column as the second mobile component upon increasing the MeOH to 1%; isolated as a white solid, 20%; mp 221-222 °C; ¹H NMR δ 7.45 (m, 26 H), 3.70 (br, 8 H), 3.25 (br, 16 H), 2.39 (s, 12 H), 1.70 (br, 8 H); IR 1622 (s), 1605 (sh), 1346 (s), 1158 (s); mol wt calcd 1139, found 1120. Anal. Calcd for C₅₈H₇₀N₆O₁₀S₄. 2CH₂Cl₂: C, 55.04; H, 5.70. Found: C, 55.19; H, 5.70.

Cyclization Results for n = 6. 4-Benzoyl-1,7-bis(ptolylsulfonyl)-1,4,7-triazacyclotridecane (1c): isolated as a white solid from the most mobile band on silica with 0.1% MeOH/CHCl₃, 56%; ¹H NMR δ 7.52 (m, 13 H), 3.07-3.70 (br, 12 H), 2.41 (s, 6 H), 1.63 (br, 8 H); IR 2980-2860 (m), 1648 (s), 1348 (s), 1149 (s).

⁽¹⁹⁾ D. B. Hope and K. C. Horncastle, J. Chem. Soc. C, 1098 (1966).

⁽²⁰⁾ T. G. Traylor, Chem. Ind. (London), 649 (1963).
(21) C. C. Howard and W. Marckwald, Chem. Ber., 32, 2036 (1899).

⁽²²⁾ F. Ribes, R. Guglielmetti, and J. Metzger, Bull. Soc. Chim. Fr.,

4,17-Dibenzoyl-1,7,14,20-tetrakis(p-tolylsulfonyl)-1,4,7,14,17,20-hexaazacyclohexacosane (2e): isolated as a white solid from the second mobile band on silica with 0.1% MeOH/CHCl₃, 17% 1 H NMR δ 7.44 (m, 26 H), 3.65 (br, 8 H), 3.14 (br, 16 H), 2.41 (s, 12 H), 1.35 (m, 16 H); IR 3000–2860 (s), 1645 (s), 1350 (s), 1158 (s).

General Procedure for Deprotection of Selectively Protected Macrocycles. The crude reaction mixture (1c and 2e, n = 6; 0.895 meguiv of benzoyl) was dissolved in THF (60 mL; distilled under N₂ from Na/benzophenone). To this was added H₂O (3.6 mmol) and sublimed potassium tert-butoxide (1.23 g, 11.0 mmol). The brown slurry was refluxed under a N2 atmosphere until TLC analysis on silica showed the reaction was complete (several hours). Addition of ice caused the precipitation of the crude product, a tan solid. The rings were separated by column chromatography on silica gel with CHCl₃/MeOH.

1,7-Bis(p-tolylsulfonyl)-1,4,7-triazacyclotridecane (1d, n = 6): eluted as the first mobile band, using 0.5% MeOH/CHCl₃; isolated as a white solid in 91% yield (based on 1c); mp 162-164 °C; ¹H NMR δ 7.49 (dd, 8 H), 3.00 (m, 12 H), 2.41 (s, 6 H), 1.55 (br, 9 H); IR 3345 (w), 1597 (sh), 1330 (s), 1145 (s); mol wt calcd 494, found 478. Anal. Calcd for C₂₄H₃₅N₃O₄S₂: C, 58.39; H, 7.15. Found: C, 58.00 H, 7.06.

1,7,14,20-Tetrakis(p-tolylsulfonyl)-1,4,7,14,17,20-hexaazacyclohexacosane (2f, n = 6): eluted from the column by increasing the MeOH to 2%; isolated as a white solid in 85% yield (based on 2e); mp 145-147 °C; ¹H NMR δ 7.53 (dd, 16 H), 3.02 (m, 24 H), 2.42 (s, 12 H), 1.42 (br, 18 H); IR 3310 (w), 1598 (sh), 1340 (s), 1154 (s); mol wt calcd 987, found 1024. Anal. Calcd for $C_{48}H_{70}N_6O_8S_4$: C, 58.39; H, 7.15. Found: C, 57.83; H, 6.95.

Acknowledgment. A.E.M. thanks the Department of Chemistry of the University of Delaware for a research fellowship.

Registry No. 1c (n = 2), 77429-90-4; 1c (n = 4), 77429-91-5; 1c (n = 6), 77429-92-6; **1d** (n = 6), 77450-07-8; **2e** (n = 4), 77429-93-7; 2e (n = 6), 77429-94-8; 2f (n = 6), 77429-95-9; 5, 77429-96-0; 6 (n = 6)2), 6315-52-2; 6 (n = 4), 4724-56-5; 6 (n = 6), 4672-50-8; 7, 14316-16-6; 8, 6367-75-5; 9, 3634-89-7; 10, 77429-97-1; 11, 77429-98-2.

were not girdled by a macrocyclic ligand. In the case of

1c, a dicopper(I) complex has been prepared³ which has unusual reactivity with CO and O₂. A dicopper(II) complex

of this same ligand which possessed two azide bridges

between the metals was found to be completely diamag-

netic at room temperature. Comparison of the structural

data for this bridged dicopper compound with those for

a nonbridged analogue indicated that the macrocycle is

capable of accommodating intermetal distances spanning

from ca. 5 to 7 Å³. Further studies of these and similar

binuclear systems offer great promise for elucidating the reactivity of two metal sites, metal-exchange interactions, and multielectron redox phenomena, especially if the nature of the donor atoms and the intermetal separations can be systematically varied by synthetic control of the mac-

To date, the macrocycles 1 capable of coordinating two

metals have been reported only with five-atom bridges between the two diethylene tridonor units. The 18-membered homologues where Y is an ethylene bridge have been of little value in forming bimetallic complexes since they

General Synthetic Route to Hexaamine Macrocycles

Andrea E. Martin and John E. Bulkowski*

Department of Chemistry, University of Delaware, Newark, Delaware 19711

Received January 6, 1981

A general synthetic route has been developed for the preparation of hexaamine macrocycles containing two diethylenetriamine units joined by aliphatic hydrocarbon bridges of varying length. By use of this method, the new 20-, 22-, and 24-membered polyamines 1,4,7,11,14,17-hexaazacycloeicosane, 1,4,7,12,15,18-hexaazacyclodocosane, and 1,4,7,13,16,19-hexaazacyclotetracosane were prepared and isolated as crystalline solids. The synthetic details are described, and the characterization of the macrocycles is reported.

Macromonocycles 1 containing two distinct sets of donor atoms are of current interest due to their ability to form bimetallic complexes with transition-metal ions. The resulting binuclear compounds have the two metals positioned within a single ligand cavity and rely on the macrocylic framework rather than directly bridging groups between the metals to maintain structural integrity. Recent work with such macrocycles1-3 has shown that discrete bimetallic complexes of this type do have unique structural, chemical, and physical properties. For macrocycle 1a, an imidazolate-bridged dicopper complex was spon-

1a, X = NH; $Y = (CH_2)_5$ b, X = NH; $Y = (CH_2CH_2)_2O$ c, X = S; $Y = (CH_2)_5$

taneously formed upon addition of imidazolate to 1:1 mixtures of 1a and Cu(II). Additionally, this complex showed marked hydrolytic stability of the bridge compared to similar imidazolate-bridged complexes where the metals

tend to encapsulate a single metal atom, yielding stable

rocyclic ligands.

mononuclear complexes. 4,5 The reported synthetic routes to 1b⁶ and 1c⁷ are inconvenient for synthesis of large

P. K. Coughlin, S. J. Lippard, A. E. Martin, and J. E. Bulkowski,
 J. Am. Chem. Soc., 102, 7616 (1980).
 P. K. Coughlin, J. C. Dewan, S. J. Lippard, E. Watanabe, and J.

M. Lehn, J. Am. Chem. Soc., 101, 265 (1979).

⁽³⁾ Y. Agnus, R. Louis, and R. Weiss, J. Am. Chem. Soc., 101, 3381 (1979).

⁽⁴⁾ D. St. C. Black and A. J. Hartshorn, Coord. Chem. Rev., 9, 219 (1972).(5) J. J. Christensen, D. J. Eatough, and R. M. Izatt, Chem. Rev., 74, 351 (1974).

⁽⁶⁾ J. M. Lehn, S. H. Pine, E. Watanabe, and A. K. Willard, J. Am. Chem. Soc., 99, 6766 (1977).

⁽⁷⁾ D. Plissard and R. Louis, Tetrahedron Lett., 45, 4589 (1972).